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A SIMPLH’IED METKOD FOR CALCULATING AEROELASTIC

EFFECTS ON TEE ROLL OF AIRCRAFT

By John M. Eedgepeth, Paul G. Wsmer, Jr.,
and Robert J. Ken

stMMARY

An approximate linearized lifting-surface theory is used in conjunc-
tion with structural hfluence coefficients to formulate a method for
analyzing the aeroelastic behatior in roll of sm aircraft. RoJMg effec-
tiveness and aileron-reversal speed are computed by the use of a Galerkin-
type procedure. Results obtained for two exsmple configurations by using
this method are compsxed with the results obtained by using the nmre
refined method of NACA TN 3067. The a+qeement is excellent.

. INTRODLKYTION

. k the design of modern high-speed aircraft, it is generaUy recog-
nized that aeroelastic effects must be accounted for accurately. One
method which should be capable of yielding reliable predictions of the
aeroelastic effects on the roll of supersonic aircraft has been presented
in reference 1. This mthod, which mskes use of structural influence
coefficients to determine the distortions and lifting-surface theory to
determine the airloads, involves, however, a considerable =o~t of com-
putational labor. For this reason, some means for sfiplifying the com-
putations without introducing an objectionable amount of error was sought.
The purpme of this paper is to describe the resulting stiplified meth~
and to evaluate its accuracy.

In this paper, attention is cotiined to the rolling problem. The
actual aircraft configuration is left general, the only restriction being
that the effects of chordwise bending we assued to be negligible. Eath
subsonic and supersonic speeds can be treated by the method, but partic-
ular attention is paid to the supersonic regime b the examples.
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EYim.QIs

A parameter defined by equation (13a)

B6,~,B~ pammeters defined by equations (1>)

%g>hp? ~1~ rolling-moment derivatives defined by equations (13c)

GJ elementary torsional,stiffness of wing

G’L(Y,~) structural-twist influence function due to unit concentrated
loqd at y-sxis

%(Y,7) structural-twist influence function due to unit concentrated
torque

L(y) aerodynamic load per unit span, positive upwind

M(y) aerodynamic pitching moment about y-axis per unit span,
positive in positive twist direction .

MC free-stresm Mach number
.

Ph static pressure at altitude

PO standard static pressure at sea level

Q(Y) aerodynamic pitching mament about elastic axis per unit
span, positive in positive twist direction

.

v free-stream velocity

a ratio of fuselage radius to exposed semispan of wing

b total wing span, 2(aZ + Z)

c(y) wing chord

E mean geometric chord

Ca aileron chord

CL 6ection lift coefficient, L(y)/qc
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section pitching-moment coefficient abcut y-axisj M(y)/qc2

section pitching-nmment coefficient about elastic SXiSj

Q(Y)/qC2

distmce measured forwad from y-axia to elastic axis,
expressed as fraction of local chord

amplitude of twist mode shape

exposed wing semispan

rolling angular velocity, positive in right-hind sense

tangent of wing-tip helix single

dynamic presswe

coordinate system (see fig. 1)

cotangent of Mach angle,
K’

angle of twist of * (see fig. 1)

twist mode shape used in Galerkin-type procedure

rofiing effectiveness, (pb/2V)F/(Pb/2V)R

aileron deflection (see fig. 1)

ratio of specific heats

flexible wing

rigid wing

effective aerodynamic coefficients due to twist

pa&eters or aerodynamic coefficients due to unit pb/2V

aileron reversal

parameters or aerodynamic coefficients due to unit aileron
deflection
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e parameters or aerodynamic coefficients due to unit twist
shape

Matrix notation:

[1 square matrix

LJ row matrix

II column matrix

N diagonal matrix

ANALYSIS

The analysis proceeds along the sane lines as
that is, the structural deformations are expressed
loads, the airloads are obtained, and then the two
ulate the aeroelastic problem.

Structural Deformations

Consider the configuration shown in figure
chordwise bending we assmed to be negligible,
imterest
terms of
M(y) as

,.

1.

that in reference 1;
in terms of the air-
sre combined to form-

If the effects of
the only distortion of

in this problem is the twist 6(y) which csm be expressed h
the section lift L(y) amd the section mment about the y-sxis
follows:

J
2

J
2

e(y) = ~(Y,d L(T) d? + @l(Y, V) M(II) dv
o 0

(1)

where GL(Y,V) ~d %(Y,T) are influence functions which define the
wing twist at y due to a wit concentrated load at the y-axis aud a
unit concentrated torque, respectively, at the spsmise station V. As
was peinted out in reference 1, these influence functions can be found
either theoretically (refs. 2, 3, and 4) or, if necessary, experimentally.

If an elastic axis (defined as a line along which load-scan be placed
without producing significmt twist anywhere) exists, this equation can
be simplified to be

.

.

.

.
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J’
-L

e(y) = ~(Y,7) Q(TI) M (2)
o

The quantity Q(y) is the section torque about the elastic axis and is
given by

Q(Y) = M(Y) - e(y)

in which e(y) is the distance measured
elastic axis, expressed a6 a fraction of

c(y) L(y) (3)

forward from the y-axis to the
the local chord.

Aerodynamic loads

The section lift and pitching moment can be expressed in coefficient
form as

Ey asslmling
steady roll

L(y) = qc(Y) cz(Y)

1

(4)

M(y) = q C2(Y) ~(y)

linearity of the aerodynamics, the loading coefficients for
can be written as

\

CZ(Y) = qJY) B(Y) +C2P(Y) *+ C15(Y) 5

>

%(Y) = C%(Y) 8(Y) +%rJY) :+ C%(Y) ~

(5)

The principal way in which this analysis depsrts from that of reference 1
is in the manner of obtainm the loads due to structural deformation
(the first term on the right-hand side of eqs. (~)). In the method of
reference 1, the loads due to the arbitrary angle-of-attack distributions
which arise from structural distortion were determined by em exact applica-
tion of lifting-surface theory; in the present method, these loads are
calculated approximately as can be seen from the fo~owing development.

. Consider, for example, the me~ti of CZJY) ●
This function is actually

.
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the ratio of the section lift coefficient due to structural distortion
to the angle of twist e(y). In general, (Y) is dependent, in an

c%
apparently complex fashion, on the shape of the twist curve; different
shapes yield different values of this function. Fortunately, however,
the value of cl~(y) iS relatively insensitive t-ochanges in the shape

of e(y). This fact suggests that CZ%( y) can be adequately approximated

by calculating it for an angle-of-attack distribution that iS reasonably
close to the expected actual mode shape and then by considering this
quantity to be fixed with respect to changes in the mode shap. This
procedure of using an effective lift-curve slope, which has been used in
the past by many investigators (for example, see ref. ~), obviously allows
a considerable simplification of aeroelastic analyses.

For the rolling problem, the section rolling derivatives CIP(Y)

and C%(Y)) whichm~t be determined for use in equation (5), can also

serve as a convenient basis for detemi% Cl~(y) ad %%(Y). The

angle-of-attack distribution that

a(y) =

yields these coefficients,

al+-y

(l+a)2
‘(6)

is, for the present *ro@*c p~poses~ a-fafi aPProx~tion to the
actual expected mode shape provided that a, the ratio of the fuselage
radius to the exposed setispan of the wing, is not too large. Thus, the
following expressions for and c

Czae %
are used:

(1+-a)l

al+y
+Y)

%UJY) ‘ - !Z’+’;2%P(Y)

~

(7)

“

.

It follows from the foregoing develop~nt that the only aercdyn~c
information necesssry for the aeroelastic analysis of the rolling problem -
is the section rolling and aileron derivatives. At supersonic speeds, .

.
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these quantities are readily obtainable for most reasonable configurations.
For rectangular wings, a rather complete derivation of the section lift

● and pitching-mment coefficients due to rolling and aileron deflection
is included h reference 1. Lift and pitching-moment distributions due
to roll can be obtained from references 6 and 7 for a wide variety of plan
formsj the lift distributions are given directly, and the pitching-moment
distributions can be found by proper tite~ation of pressure distributions.
Aileron loads can be found by methods such as those i~ustrated in ref-
erence 8; in some cases, two-dimensional strip theory should be adequate.

For subsonic speeds, no such complete coverage has been made. In
the first place, all the theoretical approaches sre approximate to some
extent. In addition, not nearly so large a vsriety of plan-form shapes
has been analyzed.
able

into
tion

amount of help
However, papers such as reference g-afford a co~ider-
in finding the desired aerodynamic derivatives.

Aeroelastic Equations

If the expressions for the loads (eqs. (4) &ad (~)) are substituted
the equilibria equation (eq. (l)), the following aeroelastic equa-
results:

1

e(y) = qJ[ c ~(yJd C2 Jo + c 12 GM(Y,T) %IJT) e(n) dq +
o

For steady roll, the total rolling moment must be zero. 97hus,

(8)
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SOLUTION OF AEROELASTIC EQUATIONS

Galerkin-Type Procedure .

If, for a particular configuration, the values of q and 5 are
given, equations (8) and (9) can be solved s~ult~eo~ly to yield the
values of twist e and rate of roll pb/2V for the elsstic aircraft.
In reference 1, these equations were solved by a collocation procedure
that involved the solution of high-order matrix equations. A method
that is considerably simpler (which takes the form of the Galerkin method)
is used herein. The solution proceeds as follows:

Let

where Bl(y) is m

Note that, although

8(Y) = k 61(y) (lo)

approximation of the actual expected twist shape.

the Galerkin solution generally involves the use of
a series of such functional only one te~ iS wed for this P~ic~~
application.

—
.

If the approximation for 8(Y) (q. (10)) is introduced into equa-
tion (8), and the resulting equation is multiplied by cl(Y) and inte- ,*

grated over the exposed send.spanof the wing, the fo~owing equation is
obtained:

.

.
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Introduction of equation (10) into equation (9) yields

J

z

f

1

O=k c(az + ~) cl (n) el(l-1)dq + * c(az + q) C2P(T) d? +
o % o

Dividing equations (11) amd (12) by 5

equations in two ~owns ~ k/5 and
I

p& ~

2V “

9

(1.z)

yields two simultaneous

The quantity that is actually

where
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.

I
(13C)

The quantities ~2~J CZPJ and C25 are actually the rolling-moment coeffi.

cients (based on e~sed wing area) resulting from a unit mode shape ‘~J

a unit pb/2VJ and a unit 5, respectively.

Rolling effectivenes~.-The rollg effectiveness @ is defined as
the ratio of the rate of roll of the flexible airplane to the rate of
roll that would occur if the airplane were rigid. The rate of roll for 1
the rigid wing is given by

Therefore, the rolling effectiveness is

#=

1 ()Be ~ck
-q~- —

A C2
P

(14)

.

,
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Aileron reversal.- The dynamic pressure at aileron reversal.can be
found by setting equal to zero. The result is

(15)

A A CIE

Twist mode shape.- The mode shape e~ should be a reasonably god

approximation to the actual twist expected. One pssible shape that may
meet this requirement is the twist that would result from the application
of the aileron loads only. This shape is given by

-1

QY) = H 1c M(Y, n) @-1) + C2 %(Y)7) %&) @ (16)
o

.
Simp lifications for w~ s with elastic sxis.-

exists, the structmal eqtilibri~ iS e~res sed by
than equation (1): Therefore, the quantities Be,.

When an elastic axis
equation (2) rather

eqs. (1~ ) and the definltion of the twist mode shape (eq. (I-6))can be
altered by deleting the terms contam~ ~(Y,q) in eq~tions (1~)

and (16) and by replacing cm
c%’

@ cmb With
%’

c%’cm=ec% J
Numerical Evaluation of Inte~als

(17)

. The Galerkin procedure just presented involves the calculation of
a rnmiberof integrals. In this section, these integals are found

.
.
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.
numerically by using Simpson’s rule with 10 equal spanwise intervals.
Matrix notation is used to facilitate the representation of the integrals.
The integration scheme and the matrix notation are similsr to those set .

forth in the section entitled “Matrix Operations” in reference 1. ——

In matrix form, the quantities definedby equations (23a), (1>),
and (13c) are

( 18)

‘e=b!
[

L

F

‘l[%l[sl[”l“2%‘

‘I[%l[sl[e’lC2C%
%=plj mm CCzp+

.

.

(19)

*

.
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and

13

Cze = 22%(:+J’+ d

Czp = [1‘ Ez+yl s cC2P
22%(1 + a)

In these definitions,
kd’ Fd’=dl’4

are row, diagonal, and

.
column matrices, Mrespectively, made up of the assumed ttist shape; S.

is an integrating matrix given by

i
4

2
4

;

4

2

4
2

This particular integrating matrix, of course, has been obtained by

1-y

(a)

applying Simpson’s rule. Other schemes for numerical integration could
.

be used by appropriately nniifying ~S]. It is questionable, however,

.
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whether any increase in accuracy obtained by changing the integration
rule would be worthwhile for this problem. Note that, for simplicity,
the subscript notation used in reference 1 to denote the location of
elements in the matrices has been dropped in this paper.

The mode shape 81 (eq. (16)) i6 written in matrix form as

[

el =GL

.

simplified by the ssme procedure”rnentionedpreviously; that
When sm elastic axis exists, the matrix formulation is considerably

is, in equa-

tions (19) and (22), the terms involving [%] should be deleted} and

the column matrices involving coefficients of mom?nts about they-axis
should be replaced by coefficients of mment about the elastic axis.

As can be seen
for determining the

APPLICATION

Computational Procedure ,.

from the preceding analysis) the req~site quantities
aeroelastic effects on the roll of a partictiar air-

craft are the structural influence coefficients [%] and [%] and

the aerodynamic derivatives Clp,
c%’ cz~’

and ~. (The deriva-

tives Cz and C
%

are given in terms of Cz and %> respectively,

by eqs. (~. ) The influence coefficients are dep%dent on the structure

only, but the aerodyn~c derivatives v ~th Mach number= If a range

of Mach numbers is to be covered, therefore, these derivatives must be
calculated anew for each vsJ.ueof ~.

Not only the aerodyamdc derivatives but also the mode shape Ell

(as calculated from eq. (22)) varies with ~. The variation of the

derivatives is unavoidable; the variation of 81 can often be circum-

vented, however) by c~c~at~ 81 for a particular Mach number and

then by using this same mode shape for the other values of ~. This
.

,
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.

process would involve little loss in accuracy protided that the lift
and pitching-manent distributions due to aileron deflection do not chsmge

. radically with Mach number.

With 81 determined, the calculation of the values of the quantities
appearing in equations (13), (14), and (15) proceeds in a straight for.
ward fashion. (~ematrix mtitfplications ineqs. (18), (19), and (20)
should be performed from left to right because the variable aerodynamic
derivatives me the last terms.) With these qumtities determined, the
dynamic pressure at aileron reversal ~ev can be calculated from equa-

tion (15), and the rolling effectiveness @ for other ~~ues of q CSII

the~be computed from equation (14). This process is repeated for each
Mach nmnber uu.tilthe entire rsmge is covered.

Smple Calculations

The method derived in this report is applied to two example conff.g-

urations. %th of these aircraft have two fletible rectangular wings
mounted diametrically on a long cylindrical fuselage; both aircraft have
fu13.-span,0.2-chord, trailing~dge ailerons. Attention is restricted to
the supersonic-speed reghe.

The two configurations are shown in figure 2 and are designated as
model-s1 and 2; the wings of both nmdels have the same plan-form aspect.
ratio of 2/c= 1.5. The -s differ, however, in that model 1 has a
rectsmgular cross section with a thichess ratio of 0.02, whereas model 2
has ~ NACA 6>A~3 cross-sectioneJ_shape. The tiew a~o differ ti
that the value of a, the ratio of fuselage radius to exposed whg semi.-
span, is 0.2 for model 1 amd 0.236 for model 2. Both wings were assmed
ta be tie of solid almninum alloy.

The torsionsJ_influence coefficients for the two nndels sre given
in table I. These influence coefficients were obtained from an approxi-
mate plate theory which is essentially the same as that of reference 4;
however, the analyses of the two nniel.swere slightly different: For
mdel 1, the root was assumed to be completely clsmped, and no account
was made for the stiffening flange effect of the bent-up aileron. For
model 2, some root flexibility was allowed, and the flsmge effect of the
aileron was taken into account approximately. In both cases, the analyses
indicated the existence of an elastic axis; therefore, only the torsional

influence coefficients due to torque
[1
~ are given in table 1.

As is evident from the preceding discussion, mdel 1 represents m
idealized configuration (actually the same as the nmdel considered h
ref. 1), and model 2 represents a mere reali&tic aircraft. The following
table smmaarizes some of the information necessary for analyzing the nmdel.s:
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Model 1 Model 2

z/c . . . . . . . . . . . . . . . . . . . . . . . ...1.5 1.5
Ca/C . . . . . . . . . . . . . . . . . . . . . . . .. 0.2 0.2

a. . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2 0.236
e. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0.0485

No absolute dimensions have been specified because, as is shown in ref-
erence 1, only the ratios are needed to smalyze the aeroelastic-rolling
problen.

The aerodynamic rol~ng derivatives were obtained for ~ = 1.I.08,
1.202, 1.338, 1.667, and 2.IM8 for which tables are available in ref-
erence 1. For LELustrative purposes, the value6 of Czp md Cqp for

the two models at ~ = 1.202 are given in table 11 for values of y/Z
between O and 1.0 in 0.1 increments. The corresponding values of

c%
and Cq% are abo included in this table.

The aileron derivatives Czb md Cqb were found by assmrhg that

two-dimensional theory is adequate for all stations except at the tip
where the loads are zero. With this assumption, the aileron loads become

.

4 Ca
cz6=-— ~= o, 0.1, 0.2, . ● . 0.9

plcl
1

Y–= 1.0
2

( )251+2e-~
CqG=-_ z= o, 0.1, 0.2, . ● . 0.9

PC c 1
1

‘%=O z= 1.0
2

(23)

I(24)

where
.–

.
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.

The assumed twist mode shape was calculated from equation (22) and
is given in table IIS for the two models. The shapes have been normalized

* by dividing by the tip ordinate snd apply for dl Mach numbers as a con-
sequence of the invarimce h the shape of the assumed aileron derivatives
givenby equation (24). In the calculation of the mode shape from equa-
tion (22), the siqglifications resulting from the existence of an elastic
axis were employed. These simplifications were also used wherever else
applicable.

With these @e shapes, then, the values of A, %, ~? % Cle)

Clp> and Clb were computed from equations (18), (19), and (~) for

each Mach number. These quantities me tabulated in table IV for the
two models. From these quantities, the dynsmic pressure at reversal and
the rolling effectiveness @ c= be calculatedly equations (15) and (14),
respectively.

RESULTS AND COMPARISONS

The results of the aileron-reversal calculations for the two nmdels
. are shown by the test-point symbols in figure 3. ti this figure the

results ~e given in.the form of a plot of the pressure ratio at rever-

()P~Sal — against Mach number, where ph is the static pressure at

‘O rev

reversal,

2
ph=— qrev

?%2

and P. is the standard sea-level static pressure, 2,u6 lb/sq ft. For

comparison, the results obtained by the method of reference 1 we also
shown in the figure. The s$greementis seen to be very good, particularly
at the higher Mach numbers.

For the two example configurations considered, the aileron-reversal
results alone provide an adequate test of the accuracy of the method of
this paper. This fact arises from the v&’tmal linearity of the variation
of rolling effectiveness @ tith @wamic pressure (or pressme ratio).
The rollling-effectivenesscurves for model 1 are given in reference 1 and
are almost llnesr. For nmdel 2, the calculations by the method of ref-
erence 1 exhibited even better linesrity. Similsr degrees of ltie=ity

. also result from the method contained herein. For the above reasons, no
roUing-effectiveness plots are included in this paper.

.
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CONCLUDUTG REMARKS

The simplified method outlined in this paper for the prediction of
aeroelastic effects on roll is evidently capable of yielding results
that compare favorably with those of highly refined methods. Although
the method has been tested for only two configurations at supersonic
speeds, there is no reason ‘cosuspect that the agreement for other con-
figurations at other speeds would be significantly worse.

The foregoingdiscussion is not meant to imply that this method is
applicable in all cases. For instance, one of the most worrisome prob-
lems facing the aeroelastician is that of chordwise distortion of the
wing; the effects of chordwise distortion, which often appesrs in wings
with very low sspect ratio, sre not considered in this paper. In addi-
tion, the single-mode Galerkin-typ approach used herein may not be good
enough for some configurations;with a highly swept wing having inbosrd
ailerons, for exsmple, the actual twist distribution changes radically
with dynamic pressure, and no single assumed twist mde shape could be
expected to yield good results over the entire range of @mnic pressure.
However, such configurations are rsrely encountered. Lastly, it is clem
that smy results obtained by this method would be only as good as the
structwal and aerodynamic ingredients introduced into the calculations.
For this reason, the methods of structwal and aerodynamic analysis must
be reliable. In some cases - at transonic speeds, for fistmce - resort
would have to be made to expertient to determine parts of the basic
information.

Although the attention throughoti this report has been confined to
the rolling problem, the same type of approach could be used for other
static-aeroel.asticproblems such as torsional divergence and center-of-
pressure shift.

.

Lsmgley Aeronautical Laboratory,
National Adtisory Committee for Aeronautics,

Langley Field, Vs., December 16, 1954.

.
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TABLE II

AERODYNAMIC COIE?FICIXNTSFOR ~ = 1.202

Model 1

0 -1.oOooCx3
.1 -1.415569
.2 -1.749190

-2.017077
:: -2.212072
●5 -2.333569

.6 -2.%7374

.7 -2.292641

.8 -2.070005

.9 -1.604045
1.0 0

0
.1
.2

.3

.4

.3

.6
●7
.8
●9

1.0

-1.145625
-1.546673
-1.855921
-2. u7637
-2. 3m731
-2.40&504

-2. 42g104
-2.341335
-2.105@3
-1.626493
0

0

-.038833
- ● 105254
-.183793
-.266137
-.344833

-. 4u681
-.4560m
-.461762
-.395341
0

6.Ooocm
5.662275
5.247568
4.836184
k. 424151
4. mo43a

3.551063
;. ;&&&

1:749870
0

Model 2

0.055563 6.OUOCOO
.036198 ~.6@547

-.014696 5.283527
-.0~833 4.883205
-.154066 4.471233
-.227246 4.044883

-.232778 3.591357
-.3411.37 3.091764
-.35&47 2.512328
-.314764 1.769672
0 0

0

● 155333
.315763
. 4AU05
.532274
.591149

. 61752z

.68105

.354115

. 43M81
o

-o. 291m
-.133159

.041662

. WJ5398

. 2994Q

. 3~624

. 432%2

.450477

.427169

.32472
0



NACA TN 3370

TABLE 111

.

TWIST MODE SHAPES LEEEllIN G&LERKIN-TYPE SOLUYION

61 for -

y/1
Model 1 Model 2

0 0 0

.1 .037166 .167091

.2 .182638 .331836

.3 .332681 .483678

.4 .482540 .616glk

●5 .619788 .7~274

.6 .737187 .822233

.7 .832533 .893651

.8
● w53~ ● 944649

.9 .95%32 .978453

1.0 1.000000 1.000000

.

.

.



NACA TN 3370

TAELE IV

23

VALUES OF A, ~, ~, Bb, Cze, Clp, AND Clb

Model 1

1.108 0.423398 0.087669 -0.0840% -0.094W 0.522170
1.202 .423398 .056242 -.053Q38 -.067719 .yt31a
1.338 .423398 .035716 -.033229 -.05Q789 .510437
1.%7 .423398 .016822 -.015677 -.033859 .4m363
2.848 .423398 .CQ4079 -.033882 -.01693Q .232679

yodel 2

1
-o. ~26021 0.462000
-. 55a64 . 3m
-.514456 .247500
-.417449 . 1650m
-.248333 .082500

1.108 0.510760 0. lxzmg -0.112045 -0.174174 0.650158 -0.562615 0.472194
1.202 .510760 .067671 -.058776 -. 1A!41O .649197 -.581382 .337281
1.338 .510760 .03.2038 -.02~37 -.093397 .6032Q9
I. 667 . 51076Q .005056

-.537432 .252961
-.m5035 -.062205 .488m9 -.4334’84 . 16ti41-

?.848 .51076 -.006153 .005059 -. 03u02 . 28%49 -.256513 .084320
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zzJ-
F-—8-I

Section A-A

Figure l.- Configuration considered in aeroelastic analysis.
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(b) Model 2.

Example configurations.
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Pressure
ratio at
reversal,
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Figure 3.- Variation of pressure ratio at reversal with Mach number.
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